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Abstract-A numerical investigation of the steady state, inverse heat conduction problem which is 
improperly posed and has a boundary singularity has been investigated. Using finite difference and finite 
element methods it is difficult to even mathematically model this problem. Therefore in this paper a minimal 
energy technique, which has been combined with a modified boundary element method, has been employed. 
The results obtained using this technique are convergent and stable and a comparison of the numerical 

solutions with analytical solutions, where available, are very encouraging. 

1. INTRODUCTION 

IT IS WITH great pleasure that we have this opportunity 

to officially celebrate the 70th birthday of Professor 
J. P. Hartnett. Professor Hartnett has throughout his 

long and distinguished research career been at the 
forefront of many novel approaches in heat transfer. 
Although the area of research which is presented in 
this paper has not been investigated by Professor 
Hartnett, we believe that the mathematical approach 
is in the spirit of much of his work and has a great 
potential for application in one of his present research 
interests, namely in viscoelastic fluids. 

The steady state heat conduction problem for the 

temperature with constant physical properties, say u, 
satisfies the Laplace equation and if either u or au/& 
is specified at all points on the boundary of a region 
(u must be specified on at least one point on the 
boundary), then u can be uniquely determined at all 
interior points of the region. This class of problems is 
well posed and can be solved using either the Finite 
Difference Method (FDM), Finite Element Method 
(FEM) or Boundary Element Method (BEM). How- 
ever, in numerous experimental situations it is not 
always possible to specify a boundary condition at all 
points on the boundary of the physical domain where 
the solution is required. For example, impediments 
may arise in the measuring of the boundary data due 
to the boundary being unsuitable for attaching a 
sensor, or the accuracy of a boundary measurement 
may be seriously impaired by the presence of the 
sensor. 

It is frequently possible to determine, or specify, 
either the function u or &/&I (i.e. the temperature or 
the heat flux) on only part of the boundary of the 
region and with no information available on the 
remaining part of the boundary. Clearly this is 
insufficient information in order to determine the 
function u everywhere within the solution domain. 
Fortunately, in many practical heat transfer appli- 
cations extra sensors may be inserted into the interior 
region of interest and the temperature measured at 

these locations in order to provide more information. 
The question then arises as to whether given u, or 

au/an, on part of the boundary and u at a number of 
interior points of the domain, it is possible to deter- 

mine uniquely the temperature distribution within the 
solution domain. Ingham et al. [l] introduced a mini- 
mal energy technique to the BEM and this has been 
successfully used to solve the Laplace equation with 
insufficient boundary information supplied in a rec- 
tangular domain. This minima1 energy technique has 

been successfully extended to determine an unknown 
temperature-dependent thermal conductivity, ref. [2], 
and to solve the backward, unsteady heat conduction 

problem, ref. [3]. However, in all these problems no 
singularities on the boundary of the solution domain 
were present. In this paper we extend this minimal 
energy technique to deal with the solution of the 

steady state, heat transfer problem with constant 
coefficients in which the solution domain contains a 
boundary singularity. 

Standard numerical methods, such as the FDM, 

the FEM and the BEM, for dealing with the bound- 
dary-value problems such as the Laplace equation 
tend, when using iterative methods, to suffer from 

having a slow rate of convergence as the mesh size 
decreases in the neighbourhood of boundary singu- 
larities, ref. [4]. Consequently, the possibility of mod- 
ifying the standard techniques in order to give special 
treatment to the singular points and thereby to obtain 
solutions which converge more rapidly has received 
considerable attention. In particular for solving the 
Laplace equation in two dimensions Motz [5] and 
Woods [6] used a modification of the FDM, whilst 
Wait and Mitchell [7] used a modification of the FEM. 
In 1973 Symm [8] devised a Modified BEM to deal 
with the presence of singularities on the boundary of 
the solution domain for the two-dimensional Laplace 
equation, and Ingham and Kelmanson [9] extended 
this technique to solve the biharmonic equation. 

In this paper we consider the problem in which 
there are insufficient boundary conditions prescribed 
for a unique solution of the Laplace equation to be 
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NOMENCLATURE 

E, G, El, GI matrices for the Boundary 
Element Method 

H(R) Sobolev space 
J(u) energy functional 
N number of boundary elements 
u temperature 
X, J‘ dimensionless Cartesian coordinates. 

l-0 
r, 

Greek symbols 

tl, 8, ;‘, 6 the first four coefficients of the 
expansion (2.13) 

set of interior points in R 

part of boundary on which no boundary 
condition is specified 
part of boundary on which boundary 
condition is given 

boundary of solution domain 

boundary value of Laplace equation 
normal derivative of 4 

interior measurement data 
solution domain. 

J 
obtained and on which there is a boundary singularity. 
The minimal energy method, combined with the 
Modified Boundary Element Method (MBEM), is 

used since it is extremely difficult even to pose a math- 
ematical procedure to solve such problems when using 
the FDM and the FEM. In order to combine the 
minimal energy technique and the MBEM an iterative 
scheme has to be employed. The numerical procedure 
is illustrated by performing all of the calculations in 
an L-shape region, although the method may easily 
be extended to more complex geometries and where 

numerous singularities exist. The unknown tem- 
perature, u, is given on part of the boundary, say F?. 
and further interior information has been given on a 
straight line, To say, see Fig. 1. Extension of the work 
to more irregular-shaped boundaries and to the 
interior information being given at random positions 
within the solution domain is straightforward. 

Let Q be an L-shape domain in which the solution 

is sought, see Fig. 1, where 0 is the origin of the 
coordinate system and, for convenience, in order to 
illustrate the numerical technique we have taken 

c 

r 
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FIG. 1. The solution domain and the notation for problem 
(I.])-(1.3). 

OA=AB= I and BC = CD = 2. The governing 

equation for the temperature, i.e. the Laplace 
equation, in R is given by 

V’u=O inn (1.1) 

which has to be solved subject to the boundary 
condition 

u = 4 (or ?u/dn = 4’) on rz 
and the interior measurement information 

(1.2) 

246.19 = x(.u.I’) on r. (1.3) 

where 4, 4’ and x are given functions. Problem (1. I)- 
(I .3) is an example of an inverse heat conduction prob- 

lem which is improperly posed and Hadamard [lo] has 
pointed out that it is impossible to solve an improperly 
posed problem by the use of the classical theory of 
partial differential equations. Therefore a special 
treatment must be developed in order to solve the 

problem (1 .l))( 1.3). 

2. BOUNDARY ELEMENT METHOD 

The fundamental basis of the BEM is Green’s Inte- 

gral Formula. For any sufficiently smooth function u, 

which satisfies the Laplace equation in R c iw’ with a 
piecewise smooth boundary 80, we may write 

- 

where o(p, q) = In Ip-qj is the fundamental solution - - 
of the Laplace equation, PER u dQ, qE Xl and n(p) 
is a constant which depends upon the-location of the 
point p and is given by 

whenpEn 

v(p) = 

27l 

0 

0 

when p E dQ, I) is the angle 

between the tangents to i3R (2.2) 

on either side of p 

whenp$RuaQ. 
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Taking the prime (‘) to denote the derivative in the 

direction of the outward normal, the boundary value 

of u(p) is 4(p) and the normal derivative is 4’(p) at 

p E X& then we have 

= q(p) u(p). (2.3) 

If we know either 4(p) or 4’(p) on dR, we can obtain 
the other function by using equation (2.3). Then on 

substituting both these values into equation (2. l), we 
can obtain the solution of the steady state heat transfer 
equation everywhere in R. 

Since the integral equations (2.1) and (2.3) can 
rarely be solved analytically we use a numerical 
scheme. The boundary aR is divided into N smooth 

intervals, dR,, wherej = 1,2,. . . , N, and on each seg- 
ment 4 and 4’ are approximated by constant values 

4, and $I, where 4i and 4; take the values of C$ and 
4 at the midpoints of the segment da,, respectively. 
Therefore the integral formulae (2.1) and (2.3) 
become 

= ~(2) U(P) (2.4) 

~,~,~~ln’lp.-yldyll.mi 

-$,4;lQ lnIt,-qldg=O, 

where (1, is the midpoint of 

rl, = rl(pJ. 

i=1,2 ,..., N (2.5) 

the segment X& and 

Using expresssion (2.5) we obtain 

(In lpi-g1 $1 = 0. (2.6) 

If we write 

G, = s ln It,-gl dg (2.7) 
39, 

and 

Eii = 
s 

In’ lp,-gl dq-rl(pJ 4, (2.8) 
cm, 

where 6, is the Kronecker delta function, then equa- 
tion (2.6) may be written as follows 

,t,E,,$,- ;G,+i=O, i=1,2 ,..., N. (2.9) 
,= I 

The system of equations (2.9) contains N equations 
and 2N unknown variables, and if either 4, or 4; is 
specified on each segment an,, then the system of 

equations (2.9) may be solved and the other quantity 
may be determined. 

Furthermore, if pi (i = 1,2,. . . ,k) are any set of 

interior points in the solution domain at which the 

solution is required then the integral equation (2.1) 
may be written in the form 

27ru(pJ = $ EI, 4, - ,g, GA, &‘, i= 1 1 . . 1 k 
,= I 

(2.10) 

where 

Cl, = In lpi-q1 dq (2.11) 

and 

EI,, = 
s 

In’ by-g1 dq. (2.12) 
>n, 

Thus given 4 or 4’ on dQ, the solution at any point 

fl E R may be found directly by evaluating equation 
(2.10). 

Using the standard BEM described above we can 

solve the steady state heat transfer equation in the 
domain 0, if u or au/&r is specified on each segment 
on the boundary of the solution domain. However, 
this numerical technique tends to yield inaccurate 

solutions for problems which involve boundary singu- 
larities, for example the steady state heat transfer 
equation in an L-shape domain. Therefore, in order 
to obtain solutions which converge more rapidly a 
Modified Boundary Element Method (MBEM) was 
developed, see Symm [8] and Ingham and Kelmanson 

191. 
Let Q be an L-shape domain, see Fig. 1, then in the 

neighbourhood of the re-entrant corner 0 the solution 
of the steady state heat transfer equation may be 

expressed as 

w(p) = a+ b rzi3 cos (20/3) + y r4j3 cos (48/3) 

+6r’cos (28)+ ... (2.13) 

where CX, b, are constants which are initially 
unknown and (r, 0) are polar coordinates centred at 
0. If we denote the first 2k terms of equation (2.13) 
for w(p) by w*(p) and define 

v(p) = u(p) - w*(p) (2.14) 

then the new unknown function v(p) satisfies the fol- 
lowing problem 

1 

v2v = 0 

z&9 = ujPn- w*lan or (2.15) 

duianl,>, = duianj,,-aw*janl,,. 

Solving problem (2.15) using the standard BEM we 
obtain a system of n-linear equations with n+2k 
unknowns. In order to balance the number of equa- 
tions and unknowns we assume that both v and du/dn 
are given at the 2k segments near the re-entrant point 
0, and hence reduce the number of unknowns to n. 
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Symm [8] indicated that the results obtained were 
not satisfactory if k = 1 but accurate approximate 
solutions could be obtained by setting k = 2. Hence 
in this paper we assume that k = 2, i.e. MI* contains 
the first 4 terms in expansion (2.13) for bv. 

a(u, I’) = 
ss 

Vu - VL~ d.u dy (3.5) 
n 

I I 
J(U) = a(u, U) = 

2 1s 2 0 
IVul’dxdJ 

3. MATHEMATICAL MODEL 

3. I. Minimal energy method 
Ingham rt al. [I] have shown that the direct and where n is the outward normal to the boundary 8R. 

the least-squares methods were unsuitable for solving We know that J(u) describes the thermal energy of 
improperly posed inverse problems when using the the steady field, ref. [ 131, and hence J(u) may be called 
BEM. Therefore, in this paper we have used a minimal the energy functional. 
energy technique to solve a slight modification of Now consider a subset of k’;‘(r,) such that 
problem (l.l)-( 1.3), i.e. we have investigated the solu- 
tion of the related problem K = {L~;cE~‘w-,), IALqr,-gl d EJ (3.7) 

where t: > 0 is a pre-assigned small quantity. Clearly 

the solution of problem (1. I)-( I .3) is one of the solu- 
tions of problem (3.1) and the problem now reduces 
to finding the solution of problem (3.1) which is con- 
tinuously dependent on the boundary conditions and 

the measurement data. 
We let H’(a) denote the usual Sobolev space in the 

domain R, ref. [l I], and 

k’(Q) = {uEH’(Q); t’ = 4 almost everywhere on r2} 

k”‘(aa) = {the trace of r on 8R; u E k”‘(Q)} 

fi”‘(r,) = {the restriction of r on r, ; Z’E I*I”‘(%l)l, 

for any + E Bl/z(r ,I, we let 

(3.2) 

then 4* E fit”(aQ). We now consider the following 
boundary value problem 

1 V’u=O in0 

u = 4* on dR. (3.3) 

We know that problem (3.3) has a unique weak solu- 
tion such that u(x)E~~“~(R), ref. [12], and in the 
domain fl the function U(X) is a harmonic. Hence we 
can define an operator 

1 A: 3 *(r,)-+Hl(q 
A? = u(x) vllEf+~2(r,) (3.4) 

where E > 0 is a small pre-assigned constant and from 

the definition of the operator A we obtain the subset 
of H’(R), namely 

S=AK. (3.8) 

Clearly S is a closed convex set in H’(C2). If the solu- 

tion of problem (3.1) exists then S is not empty. So 
problem (3.1) is equivalent to the variational problem 

J(U) = inf/(p). 
WY (3.9) 

Han [ 141 has proved that there is a unique solution 

of equation (3.9), and the solution is smooth in R if 
the functions 4 and g are sufficiently smooth. In view 

of the definition of the operator A we know that the 
variational problem (3.9) is now equivalent to 

J(A$) = $J(AlL) 

which on discretization becomes 

(3.10) 

(3.11) 

where 4 = (4T,$T,. ,~$*y)~. We assume that 
$ = ($ ,, , $,&,)’ is an unknown variable on f , and 
the remaining N - M elements of rj are denoted by 8. 
The constraint condition $ E K may be written 

where u(x) is the weak solution of problem (3.3). 
i= l,...,R. (3.12) 

If there is a +E fi’!‘(r,) such that Atj = x or Let W denote the M columns of the matrix 
IlA@Ir,>-xll//lcr,,, is sufficiently small and A$ is con- 
tinuously dependent on the data, then in order to 

(EZ- GI G- ’ E) which is related to the unknown tem- 

obtain an approximate solution of problem (1.1) by 
perature on r,, i.e. $ and W, denote the remaining 
N-M co umns 1 

the BEM we use this function tj as the boundary 
of the matrix (EI-GIG- ’ E), then 

condition r , 
expression (3.12) becomes 

We write I w$+ w,d-xl < 6 (3.13) 
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and if x = x - W,$ then we have 

Iwi+J-al<&. 

It is clear that 

(3.14) 

min J(ar) = min 
(S 

ft;‘G-‘Ei$ds 
dk2 1 

is equivalent to minJ(u) = min (&;‘G- ’ E$) and the 
problem reduces to finding $ = (II, ,, . . . , t+bJT which 
satisfies 

i 

&A$) = min $TG- ‘I$ 

IWiJ-21 GE. 
(3.15) 

Solving the constrained minima1 problem (3.15) using 
the NAG routine E04UCF, we obtain the function 
U(X) on I, and hence an approximate solution of 
problem (1. I)-(1.3) using the standard BEM may be 
obtained. The NAG routine EO4UCF is designed to 
minimize an arbitrary smooth function subject to cer- 
tain constraints which may include simple bounds on 
the variables, linear constraints and nonlinear con- 
straints and the method is a sequential quadratic pro- 
tramming method, ref. [ 151. 

3.2. Numerical scheme 

The mathematical model described in Section 3.1 
has been successfully employed to solve some inverse 
heat conduction problems [l-3]. However, all the 
problems considered contain no singularities on the 
boundary of the solution domain. As mentioned in 
Section 2, the boundary singularity leads to inaccurate 
solutions when using the standard BEM. Therefore 
a MBEM has to be employed in order to improve 
the accuracy of the numerical solution. Since the 
unknowns, g, 8,. . . , which are introduced in the 
MBEM, do not appear in the minimization equation 
(3.1 S), then it is not possible to minimize the problem 
using the minima1 energy technique as described in 
Section 3.1. Hence we devised the following iterative 
scheme : 

Step 1. Specify the boundary condition, say 4, on IZ 
and the interior information. say x, on To- 

Srep 2. Guess the values of the coefficients 51, B, y and 
S. In all the examples presented in this paper 
we have taken CI = fl= y = 6 = 0 as the 
guessed values. 

Step 3. Let z(e) = u(p) -w*(p), where w* contains 
the first 4 terms in the expansion (2.13) for IV. 
We now consider the inverse problem 

V’o = 0 

ulr, = &,-w”lr,. (3.16) 

On solving problems (3.16), using the tech- 
nique as described in Section 3.1, we obtain 
the next approximation to the values of u on 
I,, say II/. 

Step 4. Using the MBEM solve the following bound- 
ary value problem 

Vu = 0 

&, = 9lr, (3.17) 

and thus we obtain the next approximation to 
the values of the constants 2, fi, y and 6. 

Step 5. The iteration is considered to have converged 
when both the difference between two suc- 
cessive iterative vaiues of I,+ and the coeRcients 
in the MBEM, are sufficiently small, i.e. when 

and 

+ pm--a,_ ,I < E2 (3.19) 

where E, and s2 are two pre-assigned small 
values and the subscript m denotes the number 
of iterations. If both expressions (3.18) and 
(3.19) are satisfied then the process is complete 
and the unknown boundary values and the 
solution everywhere in the solution domain 
determined. Otherwise return to Step 3. 

We note that in Step 2 the first guess for the values of 
the constants ~1, p, y and 6 have been set to be zero. 
However, numerous calculations have been per- 
formed with other values for these constants and it 
has always been found that the choice of the values 
for these constants does not have any significant effect 
on the number of iterations required for convergence 
or on the accuracy of the final results. Because w is a 
local solution of the steady state heat transfer equa- 
tion in the neighbourhood of the re-entrant corner 0, 
then the value of u on I, can only generate a small 
error in the coefficients of w*. Therefore, no large 
errors are generated when a poor guess of the values 
of the constants CY, /3, y and (s has been chosen. 

4. NUMERICAL RESULTS 

The choice of the values of the two control par- 
ameters E, and a2 has been thoroughly investigated. it 
has been found that in all the examples considered in 
this paper, E, = 10m3 and s1 = lOA are sufficiently 
small so that any further decrease in the value of 
these parameters does not produce any changes in the 
results. 

4.1. Example 1 
Here we take a very simple function, u(.x, y) = 

x*-y*, as the test function and impose the following 
boundary conditions : 
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Table 1. The values of OL, /I, y, 6 and J(U) for each successive iteration for Example I 
and with N = 80 

Number of 
iterations a B 

1 0.00247 PO.0018 
2 0.00097 - 0.0005 
3 0.00018 -0.0001 
4 0.00002 -IO_’ 
5 lo-h -IO_’ 

6 IO_ 7 -10 ’ 

X2, o<x< l.y=O 

1 -y*. .Y= l,O<I’< 1 

&.u,y)= l-y’, .x= -1.-l <?‘<I (4.1) 

x- 1, -I dX<o,_r= -1 

-$‘?, .Y = 0. - 1 < J’ ,< 0 

and interior data information 

x(x) = .Y’ -0.25, XE I-,! (4.2) 

where To = { -0.75 < x < 0.75, ,V = y,,} and _rO = 
0.5. Clearly, the solution is such that c( = /I’ = 
y = 0 and 6 = 2 and numerical solutions have been ob- 

tained with N = 40, 80 and 160. 
Table 1 shows how the coefficients a, 8, 1’ and S in 

expansion (2.13) for br* and the value of the energy 
function J(U) converge as the number of iterations 
increase when taking N = 80. On evaluating equation 
(3.15) analytically for the function J(u) we obtain 
J(U) = 4. We observe that after 5 iterations the error 

in the numerical solution for the values of the con- 
stants x, b, y and 6 are within about 0.01% and for 
the value of J(U) is about 0.2%. Further, when using 

as the first guess for the values of the constants LX, b, 
y and 6 the value 1, then a very similar accuracy 
and number of iterations are obtained. This result 
indicates that the first guess for the values of constants 

Z. 1,~ and 6 does not significantly affect the accuracy 
of the numerical approximate solution. 

Figure 2 illustrates the analytical and numerical 
solutions for the value of the temperature u(x,r) on 

10 

0.5 

0.0 x 

-10 -0.5 0.0 0.5 10 

Ftc. 2. The values of the temperature u(x,y) on f, for 
Example I. where 0 is the analytical solution, n is the 
numerical solution with N = 40, * with N = 80, and A with 

N = 160. 

;’ $ J(u) 

- 0.0008 0.99843 4.02268 
~ 0.00028 0.99929 4.01927 
~ 0.00004 0.9998 1 4.01728 

_ lO_~h 0.99992 4.01594 
-IO_’ 0.99998 4.01436 
-IOmX 0.99998 4.01337 

r, as the value of N varies. It is observed that the 
agreement between the present numerical solution and 
the analytical solution is excellent. Further, the 
numerical solution appears to be converging to the 

analytical solution as the number of discretizations 
increase. 

We have also investigated the effect of the position 
of the set of interior measurement points ro on the 
accuracy of the numerical procedure. For example, 

we have taken r0 = 0.1, 0.3, 0.5, 0.7 and 0.9, and in 
order to illustrate the accuracy of the technique WC 
present results only for the case when N = 80. The 

corresponding values of the energy function J(U) arc 
4.0138, 4.0139, 4.0134, 4.0133 and 4.0132, respec- 
tively. This result indicates that when using the mini- 
mal energy method, the location of the interior 

measurement information is not very important and 
the function J(u) may be predicted to within about 
0.2%. 

4.2. Example 2 

Here we consider a mixed boundary value problem 
for which there is no simple analytical solution by 
taking 

du(x, 0)/&I = 0, 0 < .Y < 1,y = 0 (4.3) 

U(X, 1) = 0, .r= l,O<L’< 1 (4.4) 

U(-I,?‘) = 1, .Y= -1,-l dL’< I (4.5) 

?u(x, - 1)/&l = 0, - 1 Q X d I,J = -1 (4.6) 

?u(O,,)/cin = 0, s=o,-1 ,<J<O. (4.7) 

In order to test the accuracy of the numerical tech- 
nique developed in this paper we assume that X(.X.,r) 
on To is evaluated using du(x,~)/dn],, = 0 and the 

solution is obtained using the MBEM as described by 
Symm [8]. 

Table 2 shows how the coefficients in expression 
(2.13) for M’* and the value of J(U) converge as the 
number of iterations increase for the case N = 80. It 
is observed that the numerical solution again appears 
to be convergent and stable even though there is no 
simple analytical solution to this problem. Further, 
the lines of constant u(x,y) using the present numeri- 
cal technique with N = 40, 80 and 160, respeclively, 
give results which are graphically indistinguishable. 

Table 3 shows the numerical solutions which have 
been obtained for the temperature u(x, 1;) on T , with 
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Table 2. The values of a, 8, y, 6 and J(U) for each successive iteration for Example 2 
and with N = 80 

Number of 
iterations a B 

1 0.66769 -0.45398 
2 0.66723 -0.45337 
3 0.66704 -0.45294 
4 0.66688 -0.45258 
5 0.66676 -0.45232 
6 0.66669 -0.45211 
7 0.66666 -0.45206 
8 0.66666 -0.45205 

(i) w* being set to be zero, (ii) w* containing the first 

two terms in expansion (2.13) for w, and (iii) w* 
containing the first four terms in expansion (2.13) 
for w. In order to check the accuracy of the present 
numerical technique the numerical solution as 
obtained when using the MBEM with au/&r = 0 given 
on r, is also included in Table 3. The results indicate 
that the solution obtained using the standard BEM 
with the minimal energy method leads to relatively 
large errors, typically up to 10%. The MBEM 
improved the accuracy of the approximate solution, 
but the relative error when only the first two terms 
are used in the MBEM is still about 4%. Therefore, 
in order to obtain an accurate approximate solution 
it is necessary to take the first four terms in the MBEM 
and then results which are accurate to 0.3% every- 
where in the solution domain may be obtained. 

Sections 4.1 and 4.2 illustrate that the numerical 
solutions of problem (1.1) which are obtained when 
using the present numerical technique are convergent 
as the number of discretizations increase and the solu- 
tion is independent of the location of the interior 
measurement point. However, since this heat con- 
duction problem with insufficient boundary data is 
an improperly posed problem then it is necessary to 
consider the stability of the numerical technique. In 
order to do this we again consider Example 2, but 
with the addition of a small perturbation to the 
measurement data, x(x,v), and investigate the size 

Table 3. The numerical solution for the temperature u(x,y) 
on r, for Example 2 

Solution of problem (l.l)-(1.3) 
Solution with 

X up* = 0 2 terms 4 terms u given on r, 

-0.9 1.0658 1.0062 0.95502 0.95327 
-0.7 0.93623 0.89834 0.86975 0.86892 
-0.5 0.85982 0.8 1722 0.78264 0.78175 
-0.3 0.75471 0.72167 0.69183 0.69023 
-0.1 0.63245 0.61593 0.59356 0.59344 

0.1 0.45638 0.47115 0.49102 0.49134 
0.3 0.33569 0.36438 0.38319 0.38470 
0.5 0.22193 0.25246 0.27338 0.27473 
0.7 0.10348 0.13618 0.16173 0.16267 
0.9 0.00629 0.02021 0.04916 0.04945 

Y s J(u) 

-0.21637 0.00218 0.58322 
-0.21588 0.00084 0.58183 
-0.21535 0.00038 0.57958 
-0.21513 0.00016 0.57896 
-0.21498 0.00009 0.57839 
-0.21490 0.00004 0.57794 
-0.21487 0.00002 0.57762 
-0.21487 0.00002 0.57743 

of the errors which are generated by this small 

perturbation. 

4.3. Example 3 
In this example the same boundary conditions as 

those used in Example 2 are used but a small per- 
turbation 6(x,y) is added to the function x(x,y), i.e. 

X*(&Y) = X(&Y)f&X,.Y), (X>Y)El-0 (4.8) 

where 16(x, y)l < Ed and s3 is a pre-assigned small 
quantity and 6(x,y) is given stochastically. Solutions 
have been obtained for numerous values of N but in 
order to illustrate the accuracy of the results we pre- 
sent results only for N = 80. 

Table 4 illustrates a typical set of results for the 
temperature u(x,y) on r, for E) = 0, IO-’ and 10e4. 
It is observed that only very small errors are generated 
when a relatively small perturbation is input on the 
interior measurement data. Clearly, since the per- 
turbation function is given stochastically, the results 
presented are only typical results. However, numerous 
calculations have been performed and in all cases the 
results were always found to be in error by the same 
order of magnitude as those presented in Table 4. 

We have also investigated the effect of introducing 
a small perturbation onto the boundary conditions. 
Consider Example 2 again, but replace the boundary 
conditions (4.4) and (4.5) by 

Table 4. A typical numerical solution for the temperature 
u(x,y) on f , for various values of E) and x for Example 3 

and with N = 80 

Numerical solution 

X E, = 1om2 E2 = 10m4 E) = 0 

-0.9 0.95583 0.95508 0.95502 
-0.7 0.87008 0.86979 0.86975 
-0.5 0.78223 0.78268 0.78264 
-0.3 0.69204 0.69185 0.69183 
-0.1 0.59367 0.59359 0.59356 

0. I 0.39078 0.49100 0.49102 
0.3 0.38296 0.38315 0.383 19 
0.5 0.27319 0.27332 0.27338 
0.7 0.16158 0.16169 0.16173 
0.9 0.04902 0.04911 0.04916 
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Table 5. A typical variation of J(u) for various values of the 
perturbation bounds and N for Example 3 

J(u) 

Cd = 0.0 0.01 0.000 1 0.01 0.0001 
N Fi = 0.0 0.01 0.01 0.0001 0.0001 

40 0.57797 0.5885 0.5837 0.5833 0.5796 
80 0.57743 0.5833 0.5811 0.5809 0.5772 

160 0.57728 0.5812 0.5795 0.5793 0.5753 

U(X,l)=O+fi,~1~), n=l, 0<1’-<1 (4.9) 

U(-I,?‘)= l+b*(,V), .Y= -1, -1 <Jj< I 

(4.10) 

where IS,(_V)~ d c,, and 16,(_~)[ < Ed, Ed and Ed are pre- 
assigned small quantities and 6,(y) and 6,(y) are 
given stochastically. 

Again we find that the lines of constant u(x,y) in 
the solution domain as obtained without pertur- 
bation, see Example 2, are indistinguishable when E., 

and Ed are sufficiently small, say 10 -2. Table 5 illus- 
trates a typical result for the variation of the energy 
function J(u) for various values of Ed and Ed and N. 
It is again observed that the numerical technique is 
convergent and stable when a small perturbation is 

added to the boundary conditions since a small per- 
turbation generates only a small error in the numerical 

solution. 

5. CONCLUSIONS 

In this paper we have illustrated, by means of exam- 
ples, the use of the MBEM in the solution to an 
improperly posed steady state, inverse heat transfer 
problem in which there is a boundary singularity. The 
minimal energy method with an iterative scheme has 
been developed and it has been found that the numeri- 

cal solution is convergent and stable as the number of 
discretizations increase, and where analytical solu- 
tions exist the numerical solution is in excellent agree- 
ment. We have also investigated the effect of intro- 
ducing a small perturbation into measurement data 
and the boundary conditions and we have found that 
the numerical technique is always stable. 

It is important to observe that when the mini- 
mization problem is solved numerically, a good start- 
ing guess is not important and in all the examples 
presented in this paper the starting guesses for all 
the variables were set to be zero. Further, since the 

minimization problem is in a positive definite quad- 
ratic form, there is a unique minimum solution 
and therefore a poor starting guess will not result in 
another local minimum solution being obtained. 

Although only an L-shape domain has been con- 
sidered in the numerical examples, no difficulties have 
been experienced when extending this technique to 

more complicated solution domain gcomctries. 
Further. any number of boundary singularities may 

be treated using the MBEM technique combined with 
the minimal energy method. 
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